

WMIOT604 模块硬件设计指导书

V1. 0. 0

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档历史

版本	完成日期	修订记录	作者	审核	批准
V1. 0. 0	2018-11-2	创建	Linda		
					\wedge
					7
			X	XXX	

最景

1	概述	
2	模块管脚	定义
3	模块原理	图设计
		电路设计
		电源供电
		RESET 复位电路设计
5	底板 PCI	3 设计
	5.1	模块封装设计
	5.2	天线摆放位置

1 概述

WMIOT604 是基于嵌入式 Wi-Fi SoC 芯片(W600)设计的 Wi-Fi 参考设计模块,邮票孔式接口。本规格书说明了该模块的管脚定义、物理尺寸、天线摆放位置,为使得产品获得最佳的射频新能,请注意根据本指南合理设计模块及天线在底板上的摆放位置。

2 模块管脚定义

模块管脚排列及尺寸信息如图 5-1 所示:

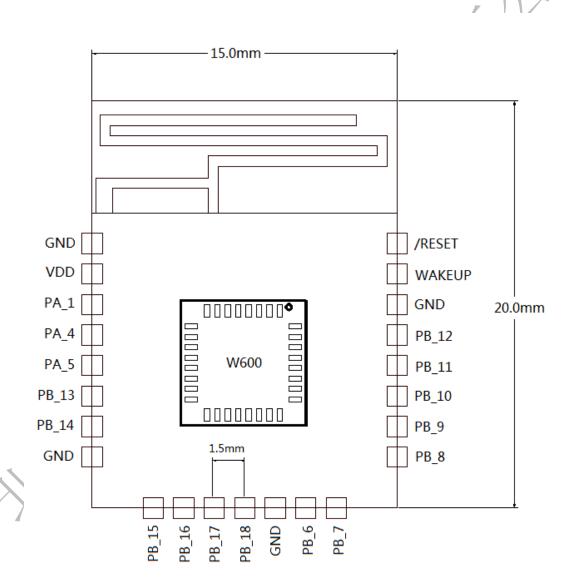


图 5-1 模块引脚排列及尺寸图

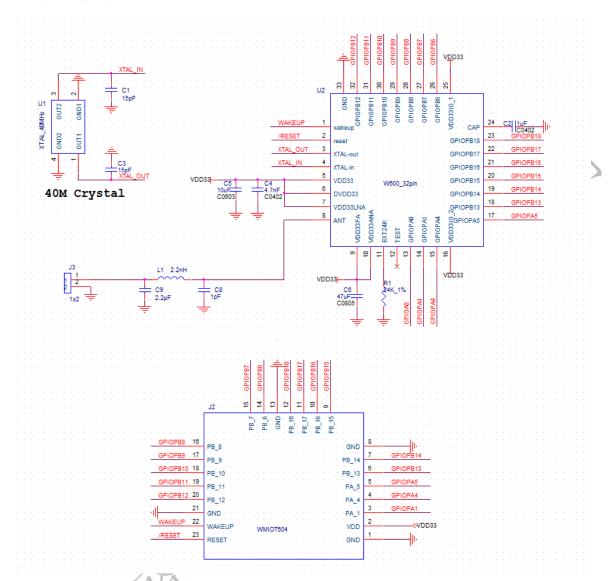
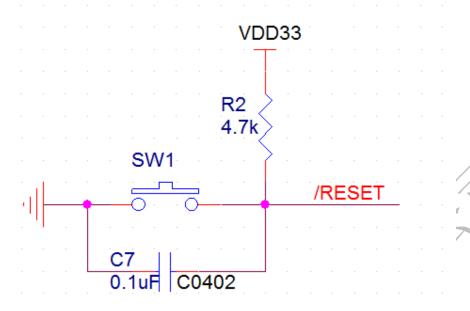

模块管脚说明如表 5-1 所示:

表 5-1 模块管脚说明

序号	名称	类型	默认管脚功能	复用功能
1	GND	P	GND	
2	VDD	P	3.3V 电源	
3	PA_1	I/0	Reserved	SIM_DATA、PWM_2、SPI(M/S)_CK、GPIOPA_1
4	PA_4	I/0	UARTO_TX	PWM_5、SPI(M/S)_DO、I ² S_M_SCL、GPIOPA_4
5	PA_5	I/0	UARTO_RX	PWM_1、SPI(M/S)_DI、I ² S_M_EXTCLK、GPIOPA_5
6	PB_13	I/0	PWM_2	I ² C_SCL、SDIO_CMD、GPIOPB_13
7	PB_14	I/0	H_SPI_INT	PWM_5、I ² C_DAT、I ² S_S_SDA、GPIOPB_14
8	GND	P	GND	2/2/>
9	PB_15	I/0	H_SPI_CS	PWM_4、SPI (M/S)_CS< I ² S_S_SCL、GPIOPB_15
10	PB_16	I/0	H_SPI_CK	PWM_3、SPL(M/S)_CK、12S_S_RL、GPIOPB_16
11	PB_17	I/0	H_SPI_DI	PWM_2、SPI(M/S)_DI、UART1_RX、GPIOPB_17
12	PB_18	I/0	H_SPI_DO	PWM_1、SPI(M/S)_DO、UART1_TX、GPIOPB_18
13	GND	P	GND	
14	PB_6	I/0	Reserved	SWDAT、UARTO_RX、PWM_4、SIM_CLK、GPIOPB_6
15	PB_7	I/0	Reserved	SWCK、UARTO_TX、SDIO_CMD、SPI(M/S)_CS、GPIOPB_7
16	PB_8	I/0	PWM __ 5	H_SPI_CK、SDIO_CK、I ² S_M_SCL、GPIOPB_8
17	PB_9	I/0	UART1_CTS	H_SPI_INT、SDIO_DATO、I ² S_M_SDA、GPIOPB_9
18	PB_10	1/0	UART1_RTS	H_SPI_CS、SDIO_DAT1、I ² S_M_RL、GPIOPB_10
19	PB_11	1/0	UART1_RX	H_SPI_DI、SDIO_DAT2、I ² C_SCL、GPIOPB_11
20	PB_12	1/0	UART1_TX	H_SPI_DO, SDIO_DAT3, I ² C_DAT, GPIOPB_12
21	GND	Р	GND	
22	WAKEUP	Ι	芯片唤醒	高电平唤醒芯片工作
23	/RESET	Ι	RESET 复位	低电平复位

3 模块原理图设计


4 典型外围电路设计

4.1 电源供电

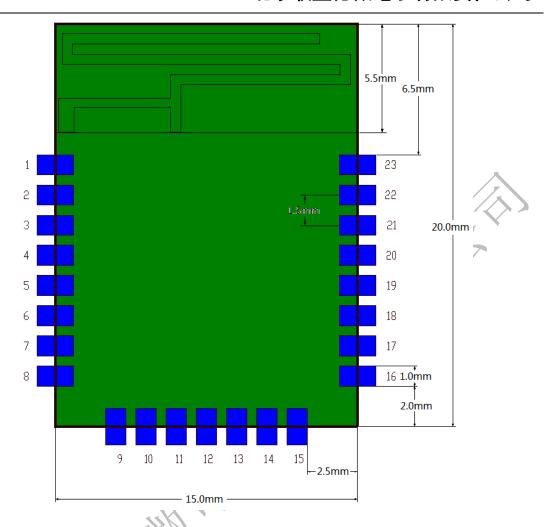
建议模块电源输入脚放置一个 220uF/6.3V 滤波电容,且外部供电电源的最大输出电流建议在 500mA 及以上。

4.2 RESET 复位电路设计

复位电路建议设计为 RC 电路, 低电平复位。

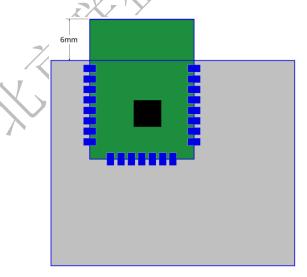
4.3 WAKEUP 功能

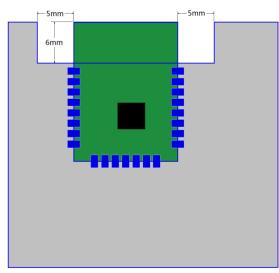
如需使用 WAKEUP 功能,则需要在模块 22 脚接 3K 下拉电阻,在 WAKEUP 引脚输入高电平时唤醒芯片。


如不使用 WAKEUP 功能,此管脚可以悬空,不可以上拉。

5 底板 PCB 设计

5.1 模块封装设计


WMIOT604 的 PCB 封装设计建议如下: PAD 大小为: 1.0*2.0mm。pin8 和 pin16 距离 板边 2mm, pin9 和 pin15 距离板边 2.5mm, 天线部分为 5.5mm*15.0mm。如下图所示:



5.2 天线摆放位置

WMIOT604 模块使用的是 2.4G wi-fi 频段的 MIFA 板载天线,增益为 2dBi。下图为两种常用且对天线性能影响较小的天线摆放方式,建议尽量选择其中一种方式摆放模块;注意:第二种摆放方式要求 PCB 天线两边距离底板两边至少 5.0mm 以上。

6 产品结构设计要点

6.1 Wifi 产品结构设计注意事项

使用 WIFI 模块的产品板在产品结构中放置需注意以下几点:

- 由于金属板、金属面对于无线信号有很强的屏蔽作用,所以 WIFI 模块 PCB 天线的一面在产品结构的摆放中一定要朝向产品的外面。禁止将 WIFI 模块 PCB 天线的一面朝向 PCB 板、电池等对于无线信号有屏蔽效果的方向;
- 实际产品板安装时, WIFI 模块 PCB 天线的位置需要竖向朝上;
- WIFI 模块在实际产品结构中应该尽量远离金属,如变压器、电机等外部设备; 结构设计中特别注意在 WIFI 模块 PCB 天线位置的周围尽量不要有螺丝柱, 当螺丝拧入时实际相当于在 WIFI 模块 PCB 天线边放置了一个金属柱子;
- 实际的产品结构确定后,为了达到最优的天线性能,建议做整机的天线匹配测试。