

北京联盛德微电子有限责任公司

WM_W800_SOC 功耗测试报告 V0.1

北京联盛德微电子有限责任公司(winner micro) 地址:北京市海淀区阜成路 67 号银都大厦 18 层 电话:+86-10-62161900 公司网址:www.winnermicro.com

修改记录

版本	修订时间	修订记录	作者	审核
V0.1	2020-9-21	初稿	Ligh	

目录

1	引言		
	1.1	编	写目的4
	1.2	预	期读者4
	1.3	术	吾定义4
2	测试	策略	
3	测试	环境	
	3.1	硬	件
	3.2	软	件
	3.3	相	关说明5
4	测试	数据	
5	测试	执行	
	5.1	Sta	ndby9
	5.2	Sle	ep11
	5.3	MO	CU 不同频率13
		5.3.1	MCU 8MHZ
		5.3.2	MCU 40MHZ
		5.3.3	MCU 80MHZ
		5.3.4	MCU 160MHZ
		5.3.5	MCU 240MHZ
	5.4	Wi	Fi PS-Mode
		5.4.1	加入 AP 后静置18
		5.4.2	加入 AP 后每隔 1 秒 Ping 次 AP19
	5.5	Wi	Fi Working
		5.5.1	WiFi RX
		5.5.2	WiFi TX

1 引言

1.1 编写目的

记录 WM_W800_SOC 各状态下的功耗测试数据,汇总形成报告。

1.2 预期读者

W800芯片产品使用者。

1.3 术语定义

SOC	System On Chip	片上系统
QFN	Quad Flat Non-leaded Package	四侧无引脚扁平封装
MCU	Micro Control Unit	微控制器
AP	Access Point	热点,也叫访问接入点
WiFi	Wireless Fidelity	基于 IEEE802.11 标准的无线局域网
PS-Mode	Power Save Mode	节电模式

2 测试策略

W800 SOC 功耗测试主要基于 QFN32 在以下几个方面展开测试:

- 1> 各 IO 关闭(仅保留 Uart0), MCU 在 Standby 状态下功耗;
- 2> 各 IO 关闭 (仅保留 Uart0), MCU 在 Sleep 状态下功耗;
- 3> 各 IO 关闭 (仅保留 Uart0), 并关闭 WiFi, 分别验证 MCU8M/40M/80M/160M/240M 频 率下功耗;
- 4> 各 IO 关闭(仅保留 Uart0), MCU 80MHZ 频率下 WiFi PS-Mode 节电模式的功耗;

5> 各 IO 关闭(仅保留 Uart0), MCU 80MHZ 频率下 WiFi 的 11b、11g、11n 各自接收功耗(不扫描,不加网, WiFi 打开但不发送);

6> 各 IO 关闭(仅保留 Uart0), MCU 80MHZ 频率, WiFi 各模式 TX 各速率结合占空比的功耗。

3 测试环境

3.1 硬件

功耗测试所需主要硬件如下:

- 1、W800 SOC QFN32 开发板;
- 2、为 W800 SOC 的供电设备 Agilent 66319D;

- 3、电流计量设备 Agilent 34401A;
- 4、配合 W800 SOC 的 Litepoint 设备 IQnxn;
- 5、连接 W800 SOC 与 PC 串口的 USB 转 TTL 小板;
- 6、连接 Litepoint 和 W800 SOC 的射频线,线损 1.0dB;
- 7、一台无线路由器;
- 8、USB 延长线。

3.2 软件

功耗测试所需主要软件如下:

- 1、W800 SOC 功耗测试所用固件;
- 2、配合供电设备 Agilent 66319D 自动测量和分析 W800 SOC 功耗的 Agilent 14565A DCS 软件;
- 3、控制 Litepoint 的 IQ Signal 软件;
- 4、连接 W800 SOC 的串口工具。
- 3.3 相关说明

①W800 SOC 开发板

图 1---W800 SOC 开发板

由于测试的是 W800 SOC 本身功耗,所以,在测试之前,将 W800 开发板本身对功耗存在影响的相关器件去除,具体如下:

A→ Reset 和 Wakeup 两个按键处的上拉电阻去除,如图 1 中标记序号 1 和 2;

B→ 为避免电容充放电过程对测试功耗的干扰,将 W800 开发板上相关电容去除,如 图 1 中标记序号 3~9。

<mark>特别说明</mark>:

由于 Wakeup 按键的上拉电阻被拆除,造成该板无法通过 GPIO 方式将处于 Standby 或 Sleep 状态的 W800 唤醒。

②电源输入设备

图 2---Agilent 66319D 正面图

使用 Agilent 66319D 向 W800 提供 3.3V 稳定电源输入。

③电流计量设备

图 3---Agilent 34401A 正面图

使用 Agilent 34401A 串入 66319D 向 W800 的供电电路中,以精确记录经过 W800 的电流。如果没有 Agilent 14565ADCS 软件配合测试的话,可以借助该设备执行测试,但其无法记录电流变化过程。

④Agilent 14565A DCS 软件

Untitled - Device Characterizat	tion Software	
1.0.000V.0.0000A	2.ms/d 🗸 Auto (Curr) 💌 Auto Scale Measure	
OFF	Current (A) 6.00	7A 1.02s
Output Voltage Current		<u> </u>
² 0.000V 0.0000A	I/O Parameters	
Voltage Current	IO type: (FID National) V Comm COUN: V Instrument S : Baud 9600 Timeout: 5000 - msec Parity: NONE	
DVM 0.000V	Interface OFIED Flow NOKE	
Current Measurement		
Type Pulse	1.000	
Auto Trig	0.000	
rre	100 108.87ms 133.33ms 500.00ms 060.67ms 833.33ms Time	1.00s
For Help, press F1	L'alculatori Moscuromonte (641113Hz cample rate) VISA	

图 4--- Agilent 14565A DCS 软件

通过该软件对 66319D 设备的操控,可自动记录和计算 W800 的精确电流数据。

必要说明:由于功耗测试时 Agilent 14565ADCS 软件<mark>截取的是 W800 工作过程中的一</mark> 段时间切片,不同时段的功耗测试数据会有浮动,请知悉。

⑤IQ Signal 软件

测试 W800 SOC 接收时, 需要 IQ Signal 软件控制 Litepoint 向 W800 发送指定信号; 测试 W800 SOC 发送时, 需要 IQ Signal 软件控制 Litepoint 接收来自 W800 的信号。

4 测试数据

执行测试策略中各项内容,于常温(25°C)测得 W800 SOC QFN32 功耗数据如下:

	■ode		Note	Tin	Tyn	Peak	Unit	
		Standby	note	2 111	11	ICUL	114	
		Sleep		0.2	0.9	1.7		
		-	8IHZ		16			
T CA			40 T HZ		22			
	∎ CU	running	80 T HZ		26			
			160 H HZ		35			
			240 T HZ		43			
		Li-Fi PS-Tode 加入AP后静置 29 46	418					
ICU Freq@80IHZ	#1 -J	ri PS-∎ode	加入AP后每隔1秒ping次AP	29	60	415		
	DV	11B	11Tbps@-80dBm	90	94	106	∎Å	
		11G	54Tbps@-65dBn	89	101	107		
	КА	11N-20NHZ	ICS7@-65dBn	90	94	106		
		11N-40MHZ	ICS78-60dBn	90	97	106		
		11B	11Tbps@19dBm_duty60%	88	262	368		
	T V	11G	54Tbps@15dBm_duty60%	90	181	287		
	IX	11N-20HHZ	ICS7@13dBm_duty50%	90	177	265		
			11N-40HHZ	ICS7@13dBm_duty50%	90	193	263	

表 1----W800 SOC 功耗测试数据

5 测试执行

5.1 Standby

W800 SOC 烧录如下固件:

将 34401A 串入 66319D 向 W800 的供电电路中,如下图:

图 6---Standby 设备连接图

主要测试步骤:

1> 通过串口连接 W800 SOC,并依次输入如下 AT 指令:

AT+RSTF

---将 W800 恢复出厂设置

AT+Z

---将 W800 复位

AT+ENTS=1, 1, 5000, 30000

0,30000 ---设置 W800 在 5 秒后进入 Sleep 状态并持续 30 秒。

2> 完成上述命令并等待 8 秒后,在 34401A 上将 RNAGE Level 调制 mA 档位,即可看到 结果如图为 11uA。

0		
🔆 Agil	ent 34401A 61/2 Digit Multimeter	
	OOOII mADC	
	* Man	
Power	DC 1 AC 1 22 4W Period AB dBm	L
	DC V AC V Ω 2W Freq Cont */) Null Min Max Op/Op/MENU RANGE / DIGITS Reset Res Res Res	
= Off = On	C > C Auto/Hold Single Shift US	50
	CHOICES LEVEL ENTER TRIG LOCAL	

图 7---Standby 实测功耗数据

5.2 Sleep

W800 SOC 烧录如下固件:

主要操作步骤:

1> 电源 66319D 上电后, 依次按键 Recall 和 Enter;

2> 打开 14565A DCS 软件,选择 IO type 并点击 Auto-Detect 键,进入操控界面。按照下图 8 内执行序号依次设置到 6;

= 66319D - Device Characterizat	ion Software	- 0 %
File Edit Source View Help		
	₹< <u>₽</u> <u>₩</u> 7	6
¹ 3.301V 0.0021A	2 sec/div 💌 Auto (Volt) 💌 Auto Scale Measure	. mA/d
cv	Data Log Display	Current Drain(A)
0 on 0 on 0 or 0 0 3.3 22 2.87125 ÷ 0.5 ÷	2	10.00m
² -0.005V0.0009A	Agilent 14565A	3.00m
Voltage Current	Do you want to save the data into (C06042020_185402.BIN) file?	0.00m
0.535V	8 Yes No Rename	4.00m
Current Measure Bange Medium ((1A) Type IC-Only	and the second	2.00m
Heasurement	-	
Current	0.00 msec 2.00 sec 4.00 sec 6.00 sec 8.00 sec 10.00 sec	12.00 sec
Accession of the load 000:00:10 Remining refield	Run Time Average Minimum Maximum Current 1.544mA 846.109uA 2.328mA	
For Help, press F1	VISA	A.03.01

图 8---14565A DCS 软件上执行步骤

3> 通过串口连接 W800 SOC,并依次输入如下 AT 指令:

AT+RSTF

AT+Z

---将 W800 复位

---将 W800 恢复出厂设置

AT+ENTS=2, 1, 5000, 30000 ---设置 W800 在 5 秒后进入 Sleep 状态并持续 30 秒。

4> 完成上述 AT 指令后,等待 8 秒后,在 14565ADCS 软件中按照图 8 中执行序号 7 和 8, 即可获得 W800 SOC 在 Sleep 状态下的电流数据。

<mark>说明</mark>:

注意 14565A DCS 软件中设置的测量时间(图 8 中序号 4 处)与 AT 指令 Sleep 状态持续时间的配合,以免影响测试数据。

图 9---Sleep 实测功耗数据

5.3 MCU 不同频率

5.3.1 MCU 8MHZ

W800 SOC 烧录如下固件,

主要操作步骤:

1> 烧录上述固件后在串口输入 AT 指令"AT+CPUDIV"即可返回

cpu clk is 8000000 +0K=60

确认 MCU 的当前工作频率。

2> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,随后即可获 得各 IO(仅保留 Uart0)和 WiFi 均关闭情况的功耗数据如下:

图 10---MCU 8MHZ 实测功耗数据

5.3.2 MCU 40MHZ

W800 SOC 烧录如下固件,

主要操作步骤:

1> 烧录上述固件后在串口输入 AT 指令"AT+CPUDIV"即可返回

cpu clk is 40000000 +0K=12

确认 MCU 的当前工作频率。

2> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,随后即可获 得各 IO (仅保留 Uart0)和 WiFi 均关闭情况的功耗数据如下:

			Data Log (Display			Current Drain(A) 60.00m
			·		 		50.00m
							40.00m
							<mark>30.00</mark> m
							20.00m
							10.00m
0.00 msec	3.55 sec	7.10 sec	10.65 se	ec 14.19	sec 17.7	4 sec	0.00 21.29 sec
	Aver	ade	Run Tir Minimum	me N M	aximum		
Current	21.8	396mA	21.244r	nA :	23.403mA		

图 11---MCU 40MHZ 实测功耗数据

5.3.3 MCU 80MHZ

W800 SOC 烧录如下固件,

主要操作步骤:

1> 烧录上述固件后在串口输入 AT 指令"AT+CPUDIV"即可返回

cpu clk is 80000000 +0K=6

确认 MCU 的当前工作频率。

打开 14565ADCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,随后即可获得各 IO (仅保留 Uart0)和 WiFi 均关闭情况的功耗数据如下:

图 12---MCU 80MHZ 实测功耗数据

5.3.4 MCU 160MHZ

W800 SOC 烧录如下固件,

主要操作步骤:

烧录上述固件后在串口输入 AT 指令"AT+CPUDIV"即可返回

cpu clk is 160000000 +0K=3

确认 MCU 的当前工作频率。

打开 14565ADCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,随后即可获得各 IO (仅保留 Uart0)和 WiFi 均关闭情况的功耗数据如下:

图 13---MCU 160MHZ 实测功耗数据

5.3.5 MCU 240MHZ

W800 SOC 烧录如下固件,

主要操作步骤:

1> 烧录上述固件后在串口输入 AT 指令"AT+CPUDIV"即可返回

cpu clk is 240000000 +0K=2

确认 MCU 的当前工作频率。

打开 14565ADCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,随后即可获得各 IO (仅保留 Uart0)和 WiFi 均关闭情况的功耗数据如下:

图 14---MCU 240MHZ 实测功耗数据

5.4 WiFi PS-Mode

主要涉及 W800 SOC WiFi PS-Mode 下两种常见场景的功耗,本章节下所有测试项均使用 如下固件:

5.4.1 加入 AP 后静置

主要操作步骤:

1> 通过串口连接 W800,并依次输入如下 AT 指令:

AT+RSTF	将 W800 恢复出厂设置
AT+Z	将 W800 复位
AT+SSID=!TP-LINK_60F3	设置 W800 连入 AP 的 SSID
AT+KEY=!1,0,1234567890	设置 W800 连入 AP 的 KEY
AT+WJOIN	将 W800 加入 AP
AT+LKSTT	查看 W800 加入 AP 后获取的 IP 地址

2> 完成上述指令后,打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取 W800 SOC 在加入 AP 后无其它操作状态下的功耗数据如下:

图 15---W800 SOC 加入 AP 后静置实测功耗数据

5.4.2 加入 AP 后每隔 1 秒 Ping 次 AP

主要操作步骤:

1> 通过串口连接 W800, 并依次输入如下 AT 指令:

AT+RSTF	将 W800 恢复出厂设置
AT+Z	将 W800 复位
AT+SSID=!TP-LINK_60F3	设置 W800 连入 AP 的 SSID
AT+KEY=!1,0,1234567890	设置 W800 连入 AP 的 KEY
AT+WJOIN	将 W800 加入 AP
AT+LKSTT	查看 W800 加入 AP 后获取的 IP 地址
AT+PING=192.168.1.1,1000,0,1	W800 每隔 1 秒持续 Ping AP。

2> 完成上述指令后,打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7
 和 8,即可获取 W800 SOC 在加入 AP 后 Ping 操作状态下的功耗数据。

图 16--- W800 SOC 加入 AP 后 Ping 操作实测功耗数据

5.5 WiFi Working

主要涉及 W800 SOC 的 WiFi 在 RX 和 TX 工作时的功耗。本章节下的所有测试项均使用 如下固件:

5.5.1 WiFi RX

5.5.1.1 11B-11Mbps

- 1> 通过射频线连接 W800 SOC 和 Litepoint,并从 Litepoint 选取相应波形文件,以 11B 11Mbps 速率向 W800 发送-80dBm 的信号;
- 2> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取
 W800 SOC 在该状态的功耗数据

图 17---W800 SOC 接收-80dBm 的 11B-11Mbps 实测功耗数据

5.5.1.2 11G-54Mbps

- 1> 通过射频线连接 W800 SOC 和 Litepoint,并从 Litepoint 选取相应波形文件,以 11G54Mbps 速率向 W800 发送-65dBm 的信号;
- 2> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取
 W800 SOC 在该状态的功耗数据

图 18---W800 SOC 接收-65dBm 的 11G-54Mbps 实测功耗数据

5.5.1.3 11N-20MHZ-MCS7

- 1> 通过射频线连接 W800 SOC 和 Litepoint,并从 Litepoint 选取相应波形文件,以 11N 20MHZ MCS7 速率向 W800 发送-65dBm 的信号;
- 2> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取
 W800 SOC 在该状态的功耗数据。

图 19---W800 SOC 接收-65dBm 的 11N-20MHZ MCS7 实测功耗数据

5.5.1.4 11N-40MHZ-MCS7

- 1> 通过射频线连接 W800 SOC 和 Litepoint,并从 Litepoint 选取相应波形文件,以 11N 40MHZ MCS7 速率向 W800 发送-60dBm 的信号;
- 2> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取
 W800 SOC 在该状态的功耗数据。

图 20---W800 SOC 接收-60dBm 的 11N-40MHZ MCS7 实测功耗数据

5.5.2 WiFi TX

5.5.2.1 11B-11Mbps

主要操作步骤:

1> 通过串口连接 W800 SOC,并依次输入如下 AT 指令:

AT+&LPCHL=1,0 设置发射信道为1信道

AT+&LPTPD=1

设置发包间隔 1ms

AT+&LPTSTR=0,0,200,17,6,0,0,0 11B-11Mbps 速率,增益为 0x17,长度 512 字节持续 发包

AT+&LPTSTP

停止发送(<mark>抓取功耗数据后再执行该指令</mark>)

2> 通过射频线连接了 W800 SOC 的 Litepoint 上查看,占空比 60%,发射功率 18dBm。 说明:

下图 Litepoint 上显示的功率均在"External Atten"设置为 0dB,加上线损 1dB,此处实际发射功率为 19dBm。

File Windows	Help							- 8
er is Connected 802	2.11a/g/p	802.11b	802.11n B	uetooth 8	02.16d 802.16e GPS GLOM	ASS FM NFC		
r Signal Analyzer V	ector Sign	al Generator	Settings				Active	Tester is connected
n Signal		Sav	e Mask Test	Save S	ignal Save Zoomed Signal	Export PSDU Log 11b-data-log.txt		
Time Parameters								
pture Mode	Stop	Sel. VSA	RF Channel	Exte	rnal AttenMax Signal Level Tr	igger Level Off:Trigger Type Capture Len. [0, 300		
Continuous Aut	o Range	1 -	1/2412	▼ MHz 0	dB 28 🔶 dBm 0	dB max Signal Trigg - 30000 - us		
Contrinuous								
ut								
sult Avg 60 👻					C Log	Amplitude vs. Time 💌		Recalculate Plot Window
	W. C.	0	h					
Paula Paula	Unit	20 F4	Avg (60)	Max 20.05	#1h			
east rower	dDm JDm	20.54	16 12	16 76	-20.20			
(vg. rower (all)	dDm JD_	10.30	10.12	10.10	-30.40	30		
Ng. rower (no gap) O Lashama	dDm JP_	-22.12	-22 56	-22 12	-30.40			
U Leakage	apc	-32.13	-32.50	-32.13	-34.05			
THE ALL	*	2.94	2.95	3.11	0.00			
1/11 Peak	JR .	-10.05	-21 32	-18.98	-99.00	20		
THE LEAK	*	10.06	8 59	11.25	0.00			
anlitude Inh	dB	-0.04	-0.02	0.05	-0.06			
have Tab	der	-0.08	-0.12	0.00	-0.24	10	a a a a	
rea Error	kH7	-11 14	-10.89	0.00	-11 14			
vm Clock	DDB	-4.61	-4.64	0.00	-4.92	E E		
MS Phase Error	der	2.79	2.70	3.00	0.00	트 트		
ong Preamble		1				e č		
umber of Bytes	Byte	540				<u> </u>		
SDV CRC		passed				Ê		
ata Rate	Mbps	11				₹ -10		
% Scrambler		1 1 0						
								i Alili Dis un Inhi -
						-20	and the set of the set	
								The stream stream the second stream st
						-30		
						2000 4000	6000 8000	10000 12000
						2000 4000	Time [us]	10000 12000
							Time Just	
orming data capture	and analys	is						
							Load Default Los	ad Save Exit

图 21---Litepoint 接收到的 W800 SOC 以 11B-11Mbps 19dBm 功率发射信号 3> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取 W800 SOC 在该状态的功耗数据。

图 22---W800 SOC 11B-11Mbps 19dBm 功率发射实测功耗数据

5.5.2.2 11G-54Mbps

主要操作步骤:

1> 通过串口连接 W800 SOC,并依次输入如下 AT 指令:

AT+&LPCHL=1,0

设置发射信道为1信道

AT+&LPTPD=1

设置发包间隔 1ms

AT+&LPTSTR=0,0,200,2A,107,0,0,0 续发包

AT+&LPTSTP

停止发送(抓取功耗数据后再执行该指令)

11G-54Mbps 速率, 增益为 0x2A, 长度 512 字节持

2> 通过射频线连接了 W800 SOC 的 Litepoint 上查看,占空比 60%,发射功率 14dBm。 说明:

下图 Litepoint 上显示的功率均在"External Atten"设置为 0dB,加上线损 1dB,此处实际发射功率为 15dBm。

Elle Windows	Hele						
File windows	нер						
er is Connected 8	02.11a/g/	p 802.11	b 802.11r	n Bluetooti	n 802.16d 8	2.16e GPS GLONASS FM NF	-c
Signal Analyzer	Vector Si	ignal Gener	ator Setti	ngs			Active Tester is con
n Signal			Save Mask 3	Test S	ave Signal	Save Zoomed Signal Export PSD	U Log ofdn-data-log.txt
Time Parameters							
pture Mode	Stop	Sel. VS	A RF Chan	nel	External Atten	ax Signal Level Trigger Level Of	f:Trigger Type Capture Len. [0,300
Continuous Au	ito Range		- 1/2412	▼ MHz	0 dB	34 🚔 dBm -25 🚔 dB max	: Signal Trigg - 30000 - us
		U					
ut							
sult Avg 60 🛛 👻					C Log		Amplitude vs. Time - Recalculate Plot Win
	lfnit	Curr	Area (60.)	Max	Hin		
eak Power	dBm	21.83	21.84	21.93	21.81		
vg. Power (all)	dBm	11.02	10.78	11.03	6.61		
vg. Power (no	dBm	14.46	14.48	14.60	14.46		
) Leakage	dBe	-27.53	-27.93	-27.20	-28.75		
/M All	dB	-24.83	-24.81	-23.92	-25.51		30
	%	5.73	5.75	6.37	5.31		
VM Data	dB	-24.78	-24.75	-23.88	-25.43		
	%	5.77	5.79	6.40	5.35		
VM Pilots	dB	-25.56	-25.66	-24.40	-26.48		
	%	5.27	5.21	6.03	4.74		
mplitude Imb.	dB	0.02	-3.50	0.13	-11.18		
haze imb.	deg	-10.60	-10.57	0.18	-0.56		9. 19. 19. 19. 19. 19. 19. 19. 19. 19. 1
req. Error	khz	-7.02	-10.57	-10.10	-11.20		
ym. Llock MC Phase Rever	ppm dog	3.07	2.83	3.24	2.26		
ata Rate	Whos	54	2.05	5.24	2.20		
unber of Symbols	noya	21					
um. PSDU	Byte	540					
oding Rate		0.75					
SDV CRC		passed					
							-20 SACKED AND AND AND AND AND AND AND AND AND AN
							-30
							2000 4000 6000 8000 10000 12000
							Time [us]
ming data conture	and ana						
thing data capture	and the	.,					
							Load Default Load Save Exi
				-	» mmm		

图 23---Litepoint 接收到的 W800 SOC 以 11G-54Mbps 15dBm 功率发射信号 3> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取 W800 SOC 在该状态的功耗数据。

图 24--- W800 SOC 11G-54Mbps 15dBm 功率发射实测功耗数据

5.5.2.3 11N-20MHZ-MCS7

主要操作步骤:

1> 通过串口连接 W800 SOC,并依次输入如下 AT 指令:

- AT+&LPCHL=1,0
- AT+&LPTPD=1

AT+&LPTSTR=0,0,200,1D,207,0,0,0 11N-20MHZ-MCS7 速率, 增益为 0x1D, 长度 512 字 节持续发包

设置发射信道为1信道

设置发包间隔 1ms

AT+&LPTSTP

停止发送(<mark>抓取功耗数据后再执行该指令</mark>)

2> 通过射频线连接了 W800 SOC 的 Litepoint 上查看,占空比 50%,发射功率 12dBm。 说明:

下图 Litepoint 上显示的功率均在"External Atten"设置为 0dB,加上线损 1dB,此处实际发射功率为 13dBm。

Signal Analyzer Signal Time Parameters pture Mode	Vector	Signal Gene	rator Setti	ngs						
a Signal Time Parameters pture Mode									Active Tex	ter is connec
Time Parameters		L	Save Mask	Test Sa	ave Signal	Save Zoomed Signal	Export PSDU		Log mino-data-log.txt	
Continuous	Stop Auto Rang	Sel. VS	KF Chan 1/2412	mel ▼ MHz	External Atten 0 dB	ax Signal Level T 34 🚖 dBm -	rigger Level Off:1 -25 🗼 dB max	Trig Sign	igger Type Capture Len. [0, 300 Ngnal Trigg • 30000 • us	
ut										
sult Avg 60 🔹	•				Log				Anplitude vs. Time • Recalculate	Plot Window
								^	× <mark>₩ </mark>	
rg. Power (no	. dBm	11.98	11.98	12.02	11.96					
	Maila	c	h	B	W- (21-1)					
T - chi - co	Unit ID.	-07.05	AVGLSt	max(Stri)	min(Stri)					
Leakage	dBc	-21.25	-26.16	-26.08	-21.88					
M ALL	<u>مه</u>	-20.31	-21.04	-24.03	20.31				30	
-lisude Teb	70 JD	9.09	9.95	5.13	3.50					
pritude imp.	dag	-0.07	-0.04	0.07	-0.27					
war VSA #1	dBe	12 16	12 17	12 26	12.15					
111 73A #1	- COM	14. 10	16.11	12.20	16.10				20 + 1 + 1 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1	1111
1 Streen	lfni+	Curr	à rea	How	Min					
an Frenz	LH-	-9.52	-9.69	-9.50	-10.31					
m Clock	DDD	-4.20	-2.70	3.00	-6.43				E 10, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	HIH
S Phase Error	der	0.82	0.78	1.06	0.50			=		
ta Rate	Mbps	65	0.10	1.00	0.00			-		
mber of Symbols		17								
m. PSDU	Byte	540								TITI
ding Rate	-,	5/6							↓ < ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
DU CRC		passed								
S Index		7								ti ti ti
/M Composite	dB	-26.31								
andwidth .	MHz	20								
ding Type		BCC							-20 - AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MAN .
alyzed Signals		1								
								Ŧ	2000 4000 5000 2000 10000 120	00
									2000 4000 0000 0000 10000 120	
							a the		Time [us]	

图 25---Litepoint 接收到的 W800 SOC 以 11N-20MHZ MCS7 13dBm 功率发射信号 3> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取 W800 SOC 在该状态的功耗数据。

图 26--- W800 SOC 11N-20MHZ-MCS7 13dBm 功率发射实测功耗数据

5.5.2.4 11N-40MHZ-MCS7

主要操作步骤:

1> 通过串口连接 W800 SOC,并依次输入如下 AT 指令:

AT+&LPCHL=1,0

AT+&LPTPD=1

设置发包间隔 1ms

设置发射信道为1信道

AT+&LPTSTR=0,0,200,1D,215,0,0,0 11N-40MHZ-MCS7 速率, 增益为 0x1D, 长度 512 字

节持续发包

AT+&LPTSTP

停止发送 (抓取功耗数据后再执行该指令)

2> 通过射频线连接了 W800 SOC 的 Litepoint 上查看,连接 Litepoint 上查看,占空比 50%, 发射功率 12dBm。

<mark>说明</mark>:

下图 Litepoint 上显示的功率均在"External Atten"设置为 0dB,加上线损 1dB,此处实 际发射功率为13dBm。

r Signal Analyzer n Signal Time Parameters pture Mode	Vector Si	gnal Generat	or Setting	2				Active Tester is con
n Signal Time Parameters pture Mode		S						
Time Parameters pture Mode		5	ave Mask Tes	st Save	Signal S	ve Zoomed Signal	Export PSDU	Log mino-data-log.txt
pture Mode								
	Stop	Sel. VSA	RF Channel	L Es	rternal AttenMa	Signal Level Trig	ger Level Off:Tri	gger Type Capture Len. [0,300
Single Av	to Bange	j 1 –	1/2412	▼ MHz 0) dB 3	🗧 dBm -25	🖨 dB max Si	gnal Trigg - 30000 - uz
Continuous	to nange	J						
at								
sult Avg 60 👻					E Log			Amplitude vs. Time • Recalculate Plot Win
							^	
	Unit	Curr (V	Avg[VS	Max (VSA1)	Min(VSA1)			
'eak Power	dBm	20.08	20.20	20.81	19.68			40
vg. Power (all)	dBm	9.37	9.23	9.46	7.88			40
vg. fower (no gap)	d.Sm	11.88	11.89	11.95	11.87			
	Unit	Curr (S	Ave[St	Max (Str1)	Min(Str1)			30
C Leakage	dBc	-27.88	-26.56	-25.01	-29.10			30
VM All	dB	-26.89	-26.12	-24.05	-27.87			
	*	4.52	4.94	6.27	4.04			
mplitude Imb.	dB	0.07	0.07	0.10	0.05			20
haze Imb.	deg	-0.05	-0.11	0.02	-0.24		-	
ower VSA #1	dBm	11.96	11.97	12.11	11.94			
LL Streams	Unit	-10.62	AVg -10 94	-10 27	Min -11 70			
req. Error	RAZ	-11.97	-10.04	-10.31	-13.62			
MS Phase Error	der	0.95	0.92	1.28	0.62			· · · · · · · · · · · · · · · · · · ·
ata Rate	Mbps	65	0.06	1. 60	0.02			
unber of Symbols		17						
hum. PSDU	Byte	540						
oding Rate		5/6						
SDV CRC		passed						
CS Index		7						
	dB	-26.89						
VM Composite		20						
VM Composite andwidth	MILZ							
VM Composite andwidth oding Type	MAZ	BCC						
VM Composite andwidth oding Type analyzed Signals	MAZ	BCC 1						2000 4000 6000 8000 10000 12000

图 27---Litepoint 接收到的 W800 SOC 以 11N-40MHZ MCS7 13dBm 功率发射信号 3> 打开 14565A DCS 软件,同 5.2 章节设置后,按照图 8 中执行序号 7 和 8,即可获取 W800 SOC 在该状态的功耗数据。

图 28--- W800 SOC 11N-40MHZ-MCS7 13dBm 功率发射实测功耗数据